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Stress relaxation in wood (Scots pine veneer) 
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The kinetics of the stress relaxation process in Scots pine veneer with regard to the relation 
between the slope of the stress (In time) curves and the initial effective stress, o-* (applied 
minus internal stress) are analysed. The data obtained provide further support for the validity 
of the relation F ~ 0.1 o-~, with F denoting the above slope. This relation has been found to 
appUy to a large variety of different materials, including metals, polymers, and others. The 
relaxation process was linear with regard to the initial stress. There was an increase in F in the 
final stage of the relaxation curves, apparently due to a different mechanism. This had to be 
taken into account when checking the validity of the above relationship between F and o-~. 
The measurements relate to radially cut veneer samples at 50% relative humidity. 

1. Introduct ion  
In comparison with other materials, especially metals 
and plastics, the vioelastic properties of wood have 
not been studied in any great detail. Of course there 
are numerous investigations of creep in wood and 
wood structures; however, the evaluation of the results 
obtained is based on simplified, largely empirical 
engineering approaches without attention paid to 
possible molecular mechanisms governing such flow. 
With regard to stress relaxation, this situation is 
especially pronounced, only a limited number of pub- 
lications dealing with this process being available in 
the literature. 

From the physical point of view, the process of 
stress relaxation is significantly simpler than the 
process of creep. In the first place, this is due to the 
fact that stress relaxation in normal solids appears to 
be governed by a single type of flow. In creep, on the 
other hand, the primary, secondary, and tertiary 
stages of the process not only are difficult to separate 
from each other, but they also appear to depend on 
different mechanisms. The accelerating tertiary stage 
may be taken as an illustration. 

Another significant feature of stress relaxation is the 
striking similarity between various solids with regard 
to the kinetics of this process. It has been amply 
demonstrated that the following formula is obeyed by 
solids with widely differing structures and chemical 
compositions, including metals, polymers, ionic 
solids, and many others [1, 2] 

r = (0.1 4- 0.01)or* (1) 

Here, F denotes the maximum (inflexion) slope of 
the stress-In time (t) curves and ~r* the initial effec- 
tive stress, i.e. the applied (a0) minus the equilib- 
rium stress, ~ ,  attained after sufficiently long times. 
Equation 1 is thus based on a simple analysis of 
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o-0n t) curves, normally showing a rectilinear portion 
covering two to three decades of time. It is the purpose 
of this paper to present a brief account of such an 
analysis carried out on pine veneer samples, and 
demonstrating that Equation 1 is obeyed also by this 
material. It may be added, however, that the samples 
used exhibited two dispersion regions which had to be 
separated in order to make the main region to comply 
with Equation 1. 

Previous work on stress relaxation in wood can be 
summarized as follows. The observations of Kitazawa 
[3] appear to confirm the validity of the so-called 
logarithmic time-law, that is a linear relation between 
the decaying stress and logarithmic time. The coef- 
ficient m is the ~r = a~(1 - m log t) relation, with ~r~ 
denoting the stress (compression) after one minute 
and t the time in minutes, seems to vary in inverse 
proportion to the density of the wood sample. Some 
ten species, mainly North American, both coniferous 
and deciduous, were measured, the values of m varying 
between 0.0178 (Alaskan cedar, density 0.45gcm -3) 
and 0.069 (Quebracho, 1.12 g cm- 3). About the same 
m value was found for Compreg. The measuring time 
was about 10 h. 

The data of Campredon [4] show that the stress 
exerted by the ends of  a bent pine board decreased 
by about one-third after 150 d under constant defor- 
mation. In a linear a(t) plot, the relaxation curve 
shows a slow-down in the final stage of the flow 
process. 

Grossman [5] points out the inadequacy of Kitazawa's 
log t formula for extended measuring periods. Studying 
specimens of hoop pine in the bending mode he found 
that after the initial linear log t portion, the relaxation 
curves showed a sigmoid inflexion region covering 
about a decade of  time, the inflexion appearing at 103 
to 104 min. There were indications of an approach to 
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a stress equilibrium after passing through this region. 
The measuring time was up to 5 x 106 sec (2 mon). A 
comparison of similar data with creep is presented by 
Grossman and Kingston [6] who report that depar- 
tures from linear viscoelasticity are small in dry wood 
(hoop pine), the relaxation and creep curves forming 
mirror images of each other when suitably normalized. 
Again a pronounced sigmoid inflexion is found after 
103 to 104 rain, encompassing the main portion of 
the stress decrease due to relaxation, and extending 
approximately over one decade of time, thus remi- 
niscent of a Maxwellian process. A relatively good fit 
was achieved using a sum of three exponentials. The 
sigmoid inflexion noted both in relaxation and creep 
was absent in the corresponding creep recovery 
curves. The humidity of the measuring room was not 
controlled. 

Similar results are reported in a subsequent paper of 
the authors [7], again relating to "commonly prevail- 
ing conditions of ambient temperature and humidity". 
When comparing creep and relaxation data, Boltz- 
mann's principle of superposition was found to be 
valid up to stresses approaching the fracture level. 
The limit of linear behaviour was lowered by high 
humidity and also by the presence of compression 
wood in the samples. Some of the creep experiments 
were carried out in tension and shear while the relax- 
ation data relate to bending. The measurements 
covered a period of about 2 mon. 

An exploratory study of the relaxation process in 
compression in the longitudinal-tangential plane of 
Douglas fir is presented by Bach and Rovner [8]. The 
extent of relaxation was found to increase with the 
grain angle. The measurements extended over a period 
of about 100 rain. 

Fracture during the relaxation process (static fatigue) 
was studied by Bach [9] for Douglas fir and spruce 
loaded along the grain. The probability of fracture for 
different times under load ( 1 to 103 rain) was deter- 
mined. This work is continued in a subsequent paper 
[10]. The author concludes that the time constants 
characterizing the stress decay of earlywood and 
latewood of Douglas fir are approximately equal. 

Relaxation in compression and tension for speci- 
mens of six American tropical species are compared 
by Echenique-Manrique [11]. Compression resulted in 
a more extensive flow than tension. The measuring 
time was 8h, the initial strain 0.1 to 0.5% in com- 
pression, and between 0.15 and 0.8 to 0.9% in tension. 
In compression, the stress decrease in 8 h ranged from 
a few per cent at the lowest initial strain to 30 to 40% 
at the 0.5% strain level, thus indicating a strongly 
non-linear behaviour. In samples loaded extensionally 
the stress fell only a few per cent at tow strains, this 
figure increasing to 7 to 9% for certain specimens 
strained initially to 0.8 to 0.9%. The results were 
obtained at room temperature and 65% relative 
humidity (r.h.). Using a three element model, the 
author finds that Eyring's theory (stress dependent 
thermal activation, see below) fits the experimental 
results. Apart from the relatively short measuring 
time, some of the relaxation curves show an indication 
of stress equilibrium in their final stage. 
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Relaxation in bending and torsion of Hinoki wood 
specimens during sorption of water vapour is the sub- 
ject reported in [12]. At constant humidity, the a(t) 
curves showed distinct signs of an approach to stress 
equilibrium. Upon a stepwise increase in humidity of 
the surrounding atmosphere, an additional relaxation 
process was recorded, bringing the relaxation modu- 
lus to very low values. The effects observed were 
similar to those known to occur in creep under cyclic 
humidity changes (e.g. [13]). The authors conclude 
that their results do not constitute a sufficient basis for 
an explanation of the accelerating effect of a humidity 
change on the flow rate. 

Relaxation in torsion of Hinoki wood impregnated 
with poly(ethylene oxide) was slower than in untreated 
specimens kept at 20% r.h. The measuring time was 
too short to allow the kinetics of the process to be 
analysed [14]. 

The relaxation behaviour of cork in compression 
has been measured by Dart and Guth [15] at tempera- 
tures between 30 and 200 ° C. The measuring period 
was a few hours, the stress being determined with a 
chain balance. Perfect linearity of the a(log t) plots 
was observed at all temperatures and stresses, the 
latter corresponding to compressions between 2 and 
60%. Extrapolation of the ~r(log t) curves yielded a 
family of straight lines intersecting in a common point 
on the log t axis (4.5 × 108 min at 31°C), thus indi- 
cating linear behaviour. It is interesting to note that 
the o-(log t) curves scaled linearly with regard to o-0, 
despite the fact that the a0 values covered a significant 
portion of the sigmoid stress-compression curve of 
cork, and that considerable destruction of the cell 
walls must have taken place at the highest com- 
pression levels. The extrapolated decay time to (r = 0 
decreased with increasing temperature. 

The work on stress relaxation in wood, as discussed 
above, is hardly amenable to a quantitative evalu- 
ation. This is due, in the first place, to the complex 
loading modes used and, in many cases, also to absence 
of a humidity control. 

2. Theoretical background 
There are two main lines of approach when describing 
stress relaxation phenomena in solids, the theory of 
relaxation time spectra (RTS), and the theory of 
stress-dependent thermal activation (SDTA). The 
concept of RTS is equivalent to that of linear viscoel- 
asticity [16]. It is a purely formal approach describing 
the process in terms of a spectrum of Maxwellian 
relaxation times, because, as well known, a single 
Maxwellian mechanism is far from sufficient to describe 
the experimental facts. Instead, a rather broad spec- 
trum is required. According to RTS, the time depen- 
dence of the stress is given by the following expression 

cr(t) = Eg~ + e0 fToo H('c)e-"¢d In ~ (2) 

where It(~) = rE(v) is the distribution of relaxation 
times r, E the modulus (unrelaxed, initial), and e0 and 
e~ the initial and ultimate (recoverable) deformation, 
respectively. E(~) denotes the contribution of flow 
mechanisms with relaxation time ~ to the process; H(r) 



is the corresponding quantity with regard to In r. The 
use of the latter distribution function is motivated by 
the fact that relaxation curves are normally plotted as 
o(log t). 

Since the connection between H(~) and the physical 
mechanisms taking place in the relaxing solid is not 
known, the RTS approach is purely formal, replacing 
o(r) with the corresponding spectral density curve. In 
normal solids, H(r) is approximately box shaped, the 
r-values being confined with about equal density to a 
limited portion of the In z axis. Such a distribution is 
equivalent to a linear o(log t) relation as normally 
observed in experiments. On the other hand, the shape 
of the o-(log t) plot is not very sensitive to the form of 
the r-distribution. 

The second major line of approach when discussing 
flow in solids is the SDTA concept (e.g. [17]). In the 
case of stress relaxation, it can be formalized in an 
especially simple way, i.e. 

-~r = d~/dt = A' exp [ - ( A G  - vo/kT)] 

= A exp (va/kT)  (3) 
where AG is the activation energy which the flow units 
have tO accumulate by thermal activation in order to 
surmount the potential barriers inhibiting their free 
movement, k is the Boltzmann constant, T the tem- 
perature, v the activation volume, A, and A' the so- 
called pre-exponential factors. This relation is based 
on the notion that the activation energy is diminished 
by the elastically stored energy, va, due to initial 
strain. In itself, Equation 3 is the Boltzmann ex- 
pression for the probability that a flow unit, or any 
microscopic part of the solid under consideration, 
attains a certain energy by thermal fluctuations. 

In its integrated form, Equation 3 reads 

kT  
a(t) = - -  In [B + (A v/kT)t] (4) 

v 
with B = exp (-Voo/kT).  As can be seen, this for- 
mula also yields a o(t) relation linear over a signifi- 
cant period of time when plotted in a o(log t) diagram. 

According to Equation 4, the maximum (inflexion) 
slope F of the o(tn t) plot, i.e. F, is given by 

F = k r / v  (5) 
As shown below, because F scales linearly with the 
initial stress ~0, and also, according to Equation 1, 
with o-~', v is expected to vary inversely with these 
quantities. 

As a rule, ~r(log t) plots show a rectilinear portion 
covering a few decades of time. The equilibrium stage, 
characterized by the attainment of the ~r~ stress level, 
is normally not included in the experiments, mainly 
due to the long measuring times required to reach the 
equilibrium stage, and also to difficulties in maintain- 
ing the stability of the equipment during such time 
periods. After passing the o~ stage, the process may 
continue by a different mechanism, resulting in a 
further decrease of o. Experimental data exhibiting 
such effects will be presented below. 

The slope F is a central parameter in both RTS and 
SDTA. In RTS, it defines the spectral density of the 
spectrum according to the formula [16] 

//(In "c) ~ F/a F (6) 

Equation 5 is a first approximation, higher derivatives 
of a(t) with regard to log t giving higher approxi- 
mations. However, in normal cases, the quality of the 
relaxation curves does not allow the use of higher 
derivatives. A box spectrum, often depicting experi- 
mental facts with sufficient accuracy, is thus defined by 
F. 

The second main parameter of interest here is the 
equilibrium stress, a~, also called internal stress, 
required when checking the validity of Equation 1. As 
already mentioned, this quantity is not easily amen- 
able to measurement, which also explains the fact that 
the similarity between different materials expressed by 
Equation 1 often eludes experimental observers. 

3. Experimental details 
3.1, Material 
The samples used were taken from radially cut splint 
veneer of Scots pine (Pinus silvestris) having a thick- 
ness of 0.75 to 0.80mm. The distance between the 
growth rings was 1.4 _+ 0.1 mm, the proportion of 
latewood 24 _+ 3%. The density was 0.490gcm -3 at 
50% r.h.; the humidity content was 5.9%. 

The effective length of the rectangular samples was 
6cm; their width was 3, 6, and 12ram (cf. Table I). 

3.2. Relaxat ion m e a s u r e m e n t s  
The measurements were carried out with equipment 
similar to that described in [18], The stiffness of this 
equipment was determined by measuring the com- 
bined movement of the stress-sensing membrane and 
that of the straining device, the latter being based 
on a micrometer screw with a pitch of 0.5 mm. The 
total deflection measured was negligible compared 
to the deformations used; the equipment can thus 
be considered as ideally stiff, and corrections are not 
necessary. It may be added that the value of Flit*, as 
appearing in Equation 1, does not depend on machine 
stiffness. 

The deflection of the stress-sensing circular mem- 
brane was determined using an inductive transformer 
(Vibrometer TS/1230) connected to a carrier frequency 
(8kHz) bridge (Vibrometer 8-ATR I/S). The defor- 
mation rate used in the initial straining of the samples 
was 0.5 and 0.042 mm sec -1 , corresponding to a strain 
rate of 8.3 x 10 -3 and 7.10 x 10 -4 sec -I, respectively. 

The relaxometer was placed in a closed cabinet in 
order to equalize humidity fluctuations in the measur- 
ing room, which was conditioned to 50 + 3% r.h. 

When evaluating the relaxation curves, the time was 
measured from the end of the straining period (given 
in Table I). Because the strain-strain curves were 
virtually linear, the initial strain may be obtained 
from the strain rate and the straining time. Normally, 
the measuring time was 1 to 2 d. The curves shown in 
Fig. 3 exemplify the period of measurement. 

When calculating the length of the straining period, 
the initial curvature of the stress-strain curve was 
corrected for, c.f. Table I. 

4. R e s u l t s  
As already mentioned, the emphasis in reproducing 
the results obtained is on the determination of the 
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T A B L E  I The values of  F,/Aa and other parameters of  a selection of typical stress relaxation curves measured on longitudinal (L), 
transverse (T), and 45 ° samples, t, denotes the straining time. The strain rate was 7.0 x 10 -4 sec t for the L-samples, the 45°-sample 12, 
and for the T-samples 13 to 16. The 45 ° sample I 1 and the T-samples 17 to 21 were deformed at 8.3 x 10 .3 sec -~ . The data  compiled in 
this table constitute only a part o f  the experiments reproduced in Figs 1 and 2. The average o f  F/Aa is 0.099 + 0.009 in accordance with 
Equation l 

No. Orientation Sample width 1;TAa F/% Aa/a 0 a 0 t I 
(mm) ( x L0 -a) (MPa) (sec) 

1 L 6 0.100 0.60 0.060 6.2 1.05 
2 L 6 0.109 2.57 0.235 8.4 1.68 
3 L 6 0.099 1.52 0.154 8.2 1.50 
4 L 6 0.101 t.31 0.129 16.7 3.23 
5 L 6 0.110 1.37 0.125 18.0 2.82 
6 L 6 0.102 1.26 0.123 18.6 2.90 
7 L 3 0.108 1.08 0.100 32.2 5,25 
8 L 3 0.086 1.42 0.165 35.6 5.61 
9 L 3 0.09I 1.61 0.176 36.7 5.67 

10 L 12 0.097 1.46 0.148 37.5 5.64 
11 45 ° 6 0.092 2.22 0.241 2.82 0.83 
t2 45 ° 6 0.116 1.86 0.16 0.935 2.43 
13 T 6 0.109 2.75 0.252 0.627 4,7 
14 T 6 0.105 3.07 0.292 0.650 4,8 
15 T 6 0.098 3.48 0.355 2.02 16.3 
I6 T 6 0.103 3.56 0.345 3.01 25.5 
l 7 T 12 0.095 1.96 0.207 0.79 0.72 
18 T 12 0.086 2.61 0.304 0.87 0.74 
19 T 12 0.084 2.07 0.247 1.26 1.40 
20 T 12 0.085 2.34 0.276 1.66 1.15 
21 T 3 0.099 2.85 0.288 1.85 1.14 

general shape of the relaxation curves as given by the 
slope F and the value of a~. 

4.1. The linearity of F (o-0) 
Fig. 1 shows the variation of Fwith the initial stress, ~0 
for three different sample orientations, 0 °, 45 ° and 90 ° 
to the grain. The slope of the F(~r0) lines increases 
in that order, showing that the extent of the stress 
decay due to relaxation is largest in the transverse 
(tangential) direction. This is in agreement with the 
data given in [8]. An important feature of these graphs 
is their linearity. Disregarding possible shifts along the 
log t axis (although difficult to estimate they do not 
appear to be important in this context) we thus find 
that the slope F scales linearly with ~0, the wood 
samples used behaving as a linear viscoelastic solid. 

The SDTA theory, as expressed by Equation 3, pre- 
dicts an exponential dependence between 6- and o-, a 
fact which can be reconciled with these results only by 
assuming an inverse relation between ~0 and the activ- 
ation volume. This will be commented on below. 

Although the F(a0) points in Fig. 1 arrange them- 
selves well along their respective lines, they show a 
somewhat larger scatter than normally observed with 
other solids. An obvious reason for this appears to be 
the heterogeneous structure of the samples, the scale 
of the heterogeneities being of the same order as sample 
dimensions. For instance, the number of growth rings 
may vary, at the same time as there may be some 
variation in orientation relative to the grain. We have 
not analysed these factors any closer, because they do 
not affect the conclusions drawn from the results. 
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Figure 1 The slope, F of  o(In t) 
against o 0 for (O) longitudinal, 
(O) transverse and (zx) 45 ° 
samples. Solid lines calculated by 
regression. 
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T A B L E  II 

Direction E (GPa) 

Longitudinal 9.7 _+ 1.4 
45 ° 0.57 _+ 0.I5 
Transverse 0.20 _+ 0.05 

The scatter of the F(ao) points shown in Fig. 1 was 
also reflected in the calculations of the modulus E as 
evaluated from the slope of the a(e) curves. In most 
cases these curves were practically linear. Due to 
structural inhomogenities of the samples there was an 
inevitable variation in the E values, which were as 
given in Table II. The value of  E was not influenced 
significantly by the change of the strain rate from 
8.3 x 10 -3 t o  7.0 x 10 ..4 sec-1, neither had variation 
of  sample width any influence (3, 6, and 12ram wide 
samples). 

4.2. The validity of Equation 1 
The main result of the present investigation is sum- 
marized in Fig. 2 which demonstrates that plotting F 
against a* gives a straight line in perfect agreement 
with Equation 1. It is also interesting to note that the 
scatter in this case is significantly below that found in 
the corresponding F(ao) diagrams, Fig. 1. 

The plot in Fig. 2 is based on the initial effective 
stress o~0 = ~ 0 -  a®, which in turn, requires the 
determination of  the equilibrium stress, am. As in all 
relaxation studies, this represents the most difficult 
part of  the measurement. Apart  from normal prob- 
lems with the stability of  the equipment, we also have 
an additional complicating factor in the fluctuations 
of the humidity of the surrounding atmosphere. Such 
fluctuations result in dimensional changes of the sample 
which, in turn, may yield apparent changes in the 
recorded stress, thus obscuring the true course of the 
relaxation process. 

While no difficulties are encountered in determining 
the value of F, assessment of ~ cannot be made 
without a certain degree of ambiguity. The main reason 
for this is that the specimens used exhibited a distinct 
approach to equilibrium in a few cases only, the bulk 
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of the curves showing a final stage, linear in the a(log t) 
plot, but with a higher slope than the main relaxation 
region from which the value of  F was determined. 
Some typical examples of  the shape of  the relaxation 
curves are shown in Fig. 3. 

With regard to defining a®, the following point may 
be noted. When a single relaxation region only is 
present, we consider the measuring times to be suf- 
ficiently long to consider the last a value as a~, even 
though a true equilibrium has not been attained, that 
is when ~r still shows a decreasing trend. Previous 
experiments with paper [18, 19] have demonstrated, 
that the error incurred in this procedure lies well 
within the scatter specified in Equation 1. When a 
slight fluctuation in cr is present, the final a value is 
averaged over a period of  time. 

When two relaxation mechanisms (dispersion 
regions) are present, which was the rule in the present 
case, we assume that the a value corresponding to the 
main relaxation can be obtained by graphical separa- 
tion of the two processes using intercepts of straight line 
extrapolations, cf. Fig. 3. A similar procedure is used 
when the two processes follow each other with an 
intermediate inflexion. 

The results of this evaluation are reproduced in 
Table I, where the total stress decrease due to the main 
relaxation process is denoted Ao-. This quantity is close 
to a* = a0 - a~,  even though a true equilibrium has 
not been attained, cf. the final stage of  the a(log t) 
curves shown in Fig. 3. The verification of  the validity 
of  Equation 1 is thus based on the use of  Aa, the ratio 
F/Aa in fact being approximately 0.1 as is evident 
from Table I. Only curves extending over a sufficiently 
long period of time, exhibiting either an approach to 
equilibrium or a distinct transition to another relax- 
ation mechanism in their final stage, were used in 
evaluating the value of  F/Aa as given in Table I. 
An additional requirement was the absence of disturb- 
ances in the curve shape due to temporary malfunction 
of the electronic equipment or the conditioning unit. 

4.3. Internal stresses 
As already mentioned, the internal stress, ai, entering 

, , / / .  
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I I I 
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Figure 2 The slope F of  a(ln t) against Act for (O) longitudi- 
nal, (o)  transverse and (zx) 45 ° samples, The quantity Aa 
is the difference between the initial stress and the apparent 
ultimate stress of  the primary relaxation region determined 
according to the scheme illustrated in Fig. 3. The solid line 
corresponds to F = 0.1Aa, Equation 1. 
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Figure 3 Examples of  typical relaxation curves plotted as a/~ o against log t. Arrows indicate the points where the apparent  a~ value was 
taken (cf. text). The numbers  refer to Table I where the experimental conditions are specified. 

the expression o-* = o- - o.i, defining the effective 
stress, is equal to the equilibrium stress in a relaxation 
measurement. When the applied stress o. falls to the o-i 
level, ~* decreases to zero and the flow process is 
terminated. This is in agreement with the generally 
accepted assumption that the flow rate is determined 
by the effective stress. Since the o-(log t) curves scale 
linearly with respect to a0, as evident from the linearity 
of the F(%) relationship, it follows from Equation i 
that also ai (=  a~) depends linearly on a0, or, indirectly, 
on the initial deformation of  the sample. In order to 
distinguish this quantity from permanent internal 
stresses, to be discussed below, we denote it 03d. 

Because the direct determination of a~a requires the 
experimentally difficult attainment of a stress equilib- 
rium, Li [20] has devised an approximation method 
based on the extrapolation of  the (do-/d log t) against 
o. curves to zero stress. This procedure appears to 
work well provided the final part of the relaxation 
curves, where the actual extrapolation is carried out, 
obeys a power law expression, i.e. 

(~ ~ (a  - -  o.i)" (6) 

giving a straight line to be extrapolated. With certain 
solids such as, for instance, polyethylene [21] this 
method gives reliable results. We refrain from apply- 
ing Li's procedure because the relaxation curves 
obtained do not appear to behave in the above way. 

It is further to be noted that in the present case the 
significance of a~d is restricted to the main dispersion 
region only. The meaning of this parameter as a limit 
to further flow has to be modified correspondingly. 

Apart from aid, the relaxation method also allows 
determination of  another internal stress level, that is 
the quantity a~, which denotes the permanent level of 
internal stresses introduced, for instance, during the 
production process. The magnitude of  air is deter- 
mined as the intercept of  the F ( a o )  lines with the 0.0 
axis [21]. As amply demonstrated in the literature, air 
varies in accordance with experimental conditions 
known to influence the internal stress level. In paper, 
for instance, drying under mechanical constraint 
yields a a~r value which increases with the drying stress 
[18]. Similar results have been recorded with poly- 

ethylene samples cooled from elevated temperatures 
under stress [21]. The magnitude of o'ir thus appears to 
be a measure of permanently dried-in or frozen-in 
stresses. 

In the present case, Fig. 1 shows that the value of  
the intercept defining o-it is larger for the longitudinal 
samples than for the two others. We simply state this 
without going into detail regarding possible interpret- 
ations of this result. The scatter of the data in Fig. 1 
is another reason for this. 

The above definition of  ai~ as the intercept of F(a0) 
with the % axis obviously implies that no flow can take 
place at stresses lower than Crir. However, this should 
be considered with some care, because the F(o.o) may 
change its slope at the lowest stresses. In Fig. 1, such 
a change is not evident, the air values being rather low. 

5 .  D i s c u s s i o n  
Although the present work may be characterized as 
being of a rather preparatory nature, it nevertheless 
shows that Equation 1, previously found to be valid 
for a wide variety of solids, also holds for the com- 
plicated structure exhibited by the wood samples stud- 
ied here. Apart from specifying the numerical value of 
the slope of the o.(ln t) curves, it also points to another 
important feature of stress relaxation, that is its linear 
scaling with regard to the initial stress. In this connec- 
tion, it may be appropriate to comment in some 
detail on this tinearity which apparently has been the 
reason for some confusion in the past. 

A stress relaxation plot which is linear over a signifi- 
cant range in a 0"(log t) diagram corresponds to an 
exponential relation between d and o- 

6" ~ exp c~a (7) 

where e is a constant. Because relaxation curves nor- 
mally exhibit the a(log t) type of linearity, it is not sur- 
prising that the SDTA concept became a commonly 
accepted tool in describing such phenomena. How- 
ever, one seems not to have noticed that the SDTA 
theory cannot distinguish between the role played by 
a(t) and a0. With regard to o.(t), Equation 4 appar- 
ently describes the linear a(log t) variation as observed 
in experiments. When it comes to the linear scaling of 
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the a(log t) curves upon changing a0, the SDTA 
approach fails for obvious reasons. 

An application of the SDTA formula [3] to a pro- 
cess scaling linearly with a0 gives an inverse type 
relation between the activation volume and a0. Due to 
the validity of Equation 1 this relation, relating to the 
first dispersion region of the curves, reads 

v = lOkT/a* (8) 

It is to be stressed that Equation 8 is valid for all solids 
obeying Equation 1; attempts to relate the magnitude 
of the activation volume to certain geometrical fea- 
tures of the relaxing structure thus appear highly ques- 
tionable. Ferguson and Yew [22] report a constant 
value of v for low stresses, whereas an inverse type 
relation between v and a is found for higher stress 
values. The data are based on the application of the 
SDTA model to the yielding of several types of wood, 
the value of v being associated with the size of the 
cellulose microfibrils which are considered as the pri- 
mary flow units. The physical meaning o fv  is not that 
of the volume of a structural unit; instead, v relates to 
the volume of the surroundings of that unit involved 
in its rearrangement. 

When applied to the RTS concept, Equation 1 
defines the width of the z-spectrum. In the simple case 
of a box spectrum, the width becomes 4.3 decades of  
v, in agreement with the findings presented above. 

The RTS model is often related to a distribution of 
activation energies, b~, through 

q ~ exp (Ui/kT) (9) 

Combining this with Equation 1 gives lOkT as the 
width of the distribution of U~. Due to the uncertain 
nature of the assumptions underlying the RTS and 
SDTA concepts we refrain from further comment on 
this result here. The same applies to Equation 8. 

For the sake of completeness it may be mentioned 
that various types of power law expressions are being 
used in order to describe the kinetics of creep in wood 
and wood structures, often in combination with simple 
mechanical models [23]. However, in the present case 
such an approach cannot be taken due to the linearity 
of a(log t). Neither can Li's method [20] for the evalu- 
ation of internal stresses from relaxation data be 
applied, because it is based on an extrapolation of a 
power law region of such curves. 

A proposal [24] is to factorize Equation 3 to read 

~r ~ exp [AG(~* )/k T] [exp (a* /F) -  1] (10) 

in order to accommodate the dual nature of a0 and 
a(t). However, neither this equation, nor its original 
version, can provide an explanation of the peculiar 
similarity between various solids as expressed by 
Equation 1. Furthermore, the physically appealing 
background of Equation 3 is lost in the modified form, 
and the origin of the logarithmic time law remains 
unexplained. As already mentioned, the RTS concept 
is a formal approach only, not giving any connection 
with possible physical mechanisms behind the process. 

During recent years, a cooperative approach to 
stress relaxation has been proposed [25]. It starts 

from the assumption that the elementary processes 
constituting the macroscopic process are not inde- 
pendent of each other, as in the SDTA theory, but 
coupled. The coupling mechansim, roughly equivalent 
to Bose-Einstein statistics, implies that a spon- 
taneously initiated event may induce any number of 
other events to take place simultaneously. 

Such a mechanism yields a time process of the type 

1 
~ ek,---2Z_ ~ ( i  1) 

which, for small values of kt approximates to b ~ 1/t 
or a ~ log t, which is in agreement with experimental 
facts. Needless to say, also b ~ exp c~a is obtained. 
Because Equation l l  can be considered as the result 
of a superposition of microscopic events of varying 
multiplicity (clusters), it is basically a spectral formula 
easily linearized with respect to a0. An important 
feature of Equation 1 i is that it appears to be bounded 
in a way limiting the maximum cluster size to values 
yielding Equation 1, cf. [26] 

It is also worth mentioning that the stretched expo- 
nential exp (kP), which has become a frequently 
used tool in describing time dependent processes, 
appears to fit into the pattern outlined by Equation 1. 
It is frequently observed that the value of the par- 
ameter fi, giving the extension of the curves in log t 
diagrams, is around 0.25 to 0.35. This is in agree- 
ment with Equation 1 which requires that fi = 0.27 
(=  e/10) when calculating the slope from plots based 
on exp (kttJ). Experimentally, as a rule, such plots 
cannot be distinguished from G(log t) diagrams when 
the constants are properly adjusted [27]. 

Despite the rather limited experimental material 
available, it has been possible to demonstrate that 
the wood samples used here fit the general pattern of 
relaxational behaviour found with other solids and 
manifesting itself in the form of Equation 1. With 
regard to the general shape of the relaxation curve, the 
transition to a a(log t) region with a higher slope in 
the final portion of such curves certainly represents a 
feature recorded only in very few instances. In certain 
metals, such as lead or tin, such behaviour can be 
due to recrystallization, although in the case of  tin a 
similar pattern was exhibited also by single crystals 
[28]. Another instance is that of rapidly quenched 
low-density polyethylene samples, where such an effect 
could be due to redistribution of internal stresses [28]. 
In the present case, the similarity of the observed 
behaviour with that of anisotropic (machine made) 
paper is especially interesting [18, 19]. Also the increase 
in the slope of the a(log t) plots in their final stage for 
wool fibres, as reported in [29], may be mentioned. 

It may be speculated that the occurrence of two 
dispersion regions in wood and paper, both appreci- 
ably hygroscopic, is associated with diffusion effects. 
In view of the significant effect of humidity changes on 
the creep of wood [13], one cannot exclude the possi- 
bility that the second dispersion region is related to the 
fluctuations of the conditioning unit. 

Considering the fact that stress relaxation in wood 
normally encompasses two dispersion regions, the 
stability of the ratio F/Aa, Equation 1, relating to 
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the initial region of the curves, appears even more 
remarkable. 
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